If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10u^2+3u-4=0
a = 10; b = 3; c = -4;
Δ = b2-4ac
Δ = 32-4·10·(-4)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-13}{2*10}=\frac{-16}{20} =-4/5 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+13}{2*10}=\frac{10}{20} =1/2 $
| X-y-7=0 | | 4b-44=2b | | 3y=76-52 | | -60=7v-6 | | 13t+6=5t2 | | Y+76=y | | 2x^2+-65^2=0 | | 6x+3=3x+567 | | 5x2-26x+5=0 | | 4(x+3)+3(x-2)=41 | | 3.2x2.3=7.36 | | 4(6x+5-2(4x+3)=54 | | 6x-36=24x | | 3(x+1)+5(3-2x)=55 | | 3v-36=6(v-4) | | -7x-3-9x=0 | | -7x-3-9=0 | | 11x-5=4x+8 | | 21=-7(2x+7) | | 5+7x=6x-8 | | 16=3m=4 | | -4x+6-2x=0 | | (3•-4b+36)/2=-4b | | (3•(4b)+36)/2=-4b | | 5(2m+1)=15 | | 5(2m+1=45 | | 4x-4/8=-7x+22 | | (-16-2b+2b)/2=b | | x2+|2x-1|=0 | | 2(m+3)=36 | | 2(5m-3=36 | | -3=3(x+8) |