If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10v^2+31v+3=0
a = 10; b = 31; c = +3;
Δ = b2-4ac
Δ = 312-4·10·3
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-29}{2*10}=\frac{-60}{20} =-3 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+29}{2*10}=\frac{-2}{20} =-1/10 $
| 3c=5×9 | | 4x+13-(2x-(4(x-3))-5)=2(x-6) | | 3x•x=108 | | -17=6x-3-17 | | Y/2=6-y | | -4m^2+8m+32=0 | | -4m^2+8+32=0 | | 3e=e-8 | | 3x=2x+80° | | 5x^2-25x+32=0 | | 9x/7-6x=2 | | Y-9=4(x+6) | | 5r-5+8r-3=180 | | 8r+3+5r-3=180 | | -3w-24=-6(w+1) | | -4(x+3)=-2x-20 | | -36=6(u-5)-8u | | -21=3(x+8)+6x | | (4-8i)-(3-4i)=0 | | 4/$4.41=x/3 | | 2x*20=10 | | 2xx20=40 | | 2x*20=40 | | (2÷3)y-(1)=3÷4 | | (2m+1)÷5=-3 | | (2m+1)÷5=(-3) | | z=-3/4 | | z=-1+1/4 | | z=-2+3/4 | | 28+x=12 | | Y=0.70x+40 | | x/10x+9=2x-7 |