If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10w^2+19w+6=0
a = 10; b = 19; c = +6;
Δ = b2-4ac
Δ = 192-4·10·6
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-11}{2*10}=\frac{-30}{20} =-1+1/2 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+11}{2*10}=\frac{-8}{20} =-2/5 $
| −7=3(h−5)−h | | x+25=5x31 | | x~12=~14 | | 39+5x=-3(6-8x) | | -8x-1=-13-4x | | -3m+1=4(m-5) | | 3/4x+3=x+5 | | -12p+9p=12 | | 6(-14)-3y=-60 | | 15+2.5m=40 | | 6(—14)/3y=-60 | | 5(t+2)=9t-14 | | 6.15=400/x | | (a-6)(a-12)+(2a-5)(a-9)=a(2a-35)+157 | | (−1/2)+a=5/8 | | −1/2+a=5/8 | | 12t+7-6t=25 | | h/90-4/6=4/6 | | h/90-4/6=4/5 | | 9+9=-2(4x-9) | | -13+58=-5(x+3) | | 4x-8+90=144 | | 175+(17x-3)=(17x+18 | | -13+58+-5(x=3) | | 3x+11=7x−13 | | 8y+5+2y+7=41 | | −2x−6−=17 | | n–5+ –16=–12 | | 8(1-2n)+5=-n-32 | | 12+7x-3=21 | | 3x-10+5=16 | | 5(4x+6)=-21+11 |