If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x(2)-19x+6=0
We add all the numbers together, and all the variables
10x^2-19x+6=0
a = 10; b = -19; c = +6;
Δ = b2-4ac
Δ = -192-4·10·6
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-11}{2*10}=\frac{8}{20} =2/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+11}{2*10}=\frac{30}{20} =1+1/2 $
| 3x-5=403x-5=403x-5=40 | | Tn=n2−5n+4 | | -1/3x-2/3=4/3x-1 | | 2y+9=4y-13 | | 4h+3=13 | | 8h-27=57 | | 0,8(2u-3)=(2u+4)×0,6 | | 39+x=144-2x | | 8x+23=3x+103 | | 9-3(4-11)=(5x-12)x6-12 | | 6x^2+3x=11 | | 7b+10-6=15b+10 | | Y+9y+2=8y+58 | | 4(2x-10)-3(1-x)=0 | | 6x+12x=-60-6x | | 2x+20=25−3x | | 6+12x=-48+x | | 54-4a=26 | | 7(x+3)=5x-29 | | 5a-10=50 | | 5x+2(x+3)=14 | | 3x-3=-1x+5+4x | | y-9=4+2y | | 4+(b-1)^2+1=10+b^2 | | (5m+3)+(3m-7)=0 | | -5x–12=2x+9 | | -5z–12=2z+9 | | 4+(b-1)^2+1=0 | | 5x+6=2x+45x | | 8x+2=4x+10x | | 4(3w+2)÷3=-1 | | -5w+7=-2(w+1) |