10x(4-x)=7x+2(3x+5)

Simple and best practice solution for 10x(4-x)=7x+2(3x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10x(4-x)=7x+2(3x+5) equation:



10x(4-x)=7x+2(3x+5)
We move all terms to the left:
10x(4-x)-(7x+2(3x+5))=0
We add all the numbers together, and all the variables
10x(-1x+4)-(7x+2(3x+5))=0
We multiply parentheses
-10x^2+40x-(7x+2(3x+5))=0
We calculate terms in parentheses: -(7x+2(3x+5)), so:
7x+2(3x+5)
We multiply parentheses
7x+6x+10
We add all the numbers together, and all the variables
13x+10
Back to the equation:
-(13x+10)
We get rid of parentheses
-10x^2+40x-13x-10=0
We add all the numbers together, and all the variables
-10x^2+27x-10=0
a = -10; b = 27; c = -10;
Δ = b2-4ac
Δ = 272-4·(-10)·(-10)
Δ = 329
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-\sqrt{329}}{2*-10}=\frac{-27-\sqrt{329}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+\sqrt{329}}{2*-10}=\frac{-27+\sqrt{329}}{-20} $

See similar equations:

| 144,400,000w=17.5 | | 2(r-3)-8=50.÷4 | | 2x^2-16=6x | | 288=(x+1)+(x+2) | | 3x+30=10x | | 3+y/5=28 | | 9e+117=2e-9 | | y=1/7(0)+7 | | 90+t+t+10.5=180 | | (750)(40)+2d-28-86=300 | | 92=-4(7r+5) | | 3.7+10x=8.54 | | 45-5x=13+11x | | 8n+6=7n+6+n | | -2x-1=2x-21 | | N(x)=-x^2+64 | | 30+.8x=110+.3x | | 18x+6=x+5 | | 180=x*3 | | 8n+6=7n+7+n | | 6(x+9)+2=6x+56 | | 2.2+10x=7.18 | | -8(4K+3)-8k=176 | | -2-42=a | | 5y+4y+8=15y-9 | | 38=5x-x+10 | | 2(x+2)=5(x-1)-9 | | 5a-1=6a+2 | | 75=11x+16 | | 2(3x-4=6x+8 | | k^2=0.81 | | -5x20x=100 |

Equations solver categories