If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x(4x+7)=0
We multiply parentheses
40x^2+70x=0
a = 40; b = 70; c = 0;
Δ = b2-4ac
Δ = 702-4·40·0
Δ = 4900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4900}=70$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(70)-70}{2*40}=\frac{-140}{80} =-1+3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(70)+70}{2*40}=\frac{0}{80} =0 $
| 16=x/2+8 | | 2-x=1÷4(5-x)-1÷5(4x-5) | | |6x-9|=33x | | 2-x=1/4(5-x)-1/5(4x-5) | | -6n+17=-5n-7 | | 5/6+m=2/9 | | 7x^2+2(9-x)^2=0 | | 4(x-7)=2x+2 | | 5x+17x-44x=270 | | -8h-13=11 | | 10(4x^2+7)=0 | | 18x+6=3(6x+2 | | 6(7-x)-(x+5)=8+8(x-2) | | 2=-11+v | | 6=v/3+9 | | 9(x-5)-5(x-2)+6x=0 | | -1=4s | | n-1220=n | | -4x+5=5+4x | | x^2-4x-4x+16+x^2=-12x-20 | | 2x-15=123 | | 4÷3=5y-2÷2y+2 | | 19x-1=13x-15 | | 4(x+2)=3x+6 | | 4÷3=5y-2÷2y+2=8y÷3÷2y | | 9x^2+12x+36=0 | | 4n-40=-(14n-14) | | -40+5r=-5(6r-6) | | 200=5-x^2 | | 7n-11n=36 | | -8y+1=31 | | (132-x)+(6x-12)=180 |