10x+(15/x)=40

Simple and best practice solution for 10x+(15/x)=40 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10x+(15/x)=40 equation:



10x+(15/x)=40
We move all terms to the left:
10x+(15/x)-(40)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
10x+(+15/x)-40=0
We get rid of parentheses
10x+15/x-40=0
We multiply all the terms by the denominator
10x*x-40*x+15=0
We add all the numbers together, and all the variables
-40x+10x*x+15=0
Wy multiply elements
10x^2-40x+15=0
a = 10; b = -40; c = +15;
Δ = b2-4ac
Δ = -402-4·10·15
Δ = 1000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1000}=\sqrt{100*10}=\sqrt{100}*\sqrt{10}=10\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-10\sqrt{10}}{2*10}=\frac{40-10\sqrt{10}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+10\sqrt{10}}{2*10}=\frac{40+10\sqrt{10}}{20} $

See similar equations:

| 6t5=105(t=4;t=7;t=10) | | 2+x-4=-1 | | -9=-4+x-6 | | 11=3w+5w= | | -10-15n=33+8n | | -26=-10-4x | | 6x+5=2(3x+4 | | 3x+7=13(x=-2;x=2;x=) | | 4=-7x+25 | | x8+5=17 | | -5p+35=50 | | -14+3x=-50 | | 4g–9=-17 | | 3(x−2)−2=−2+x7 | | a/25=3/10 | | 3n-2+6=4+8n | | 18+4a=42 | | 2(x-3)-4(2x+6)=12 | | 9m-15+16m=180 | | 9m-15+16m=80 | | 5+4x–7=4x+3–X | | m+2/3=m/4-1 | | p-(-13)=17 | | x*2x=9500 | | X=(y-30)5 | | (11+-2x)5+4x=103 | | 2h+1=5h-72h+1=5h-7 | | -14-3x=x | | 4x−12x−7=7(12x−7) | | 5p-9=2p+12 | | |-2+r|=1 | | 5(2k-4)=-100 |

Equations solver categories