10x+140=(10+x)(x+2)

Simple and best practice solution for 10x+140=(10+x)(x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10x+140=(10+x)(x+2) equation:



10x+140=(10+x)(x+2)
We move all terms to the left:
10x+140-((10+x)(x+2))=0
We add all the numbers together, and all the variables
10x-((x+10)(x+2))+140=0
We multiply parentheses ..
-((+x^2+2x+10x+20))+10x+140=0
We calculate terms in parentheses: -((+x^2+2x+10x+20)), so:
(+x^2+2x+10x+20)
We get rid of parentheses
x^2+2x+10x+20
We add all the numbers together, and all the variables
x^2+12x+20
Back to the equation:
-(x^2+12x+20)
We add all the numbers together, and all the variables
10x-(x^2+12x+20)+140=0
We get rid of parentheses
-x^2+10x-12x-20+140=0
We add all the numbers together, and all the variables
-1x^2-2x+120=0
a = -1; b = -2; c = +120;
Δ = b2-4ac
Δ = -22-4·(-1)·120
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{484}=22$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-22}{2*-1}=\frac{-20}{-2} =+10 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+22}{2*-1}=\frac{24}{-2} =-12 $

See similar equations:

| x/3+15=22 | | 3u=16-u | | -5x-10=45’ | | X-2=-w | | 3/5x-4+1/5x=-28 | | 90=1/2x+1/3x+5 | | 3x-24=-5x+8 | | 10x–2(4x+12)=3x–(24+x) | | 6+2u=5u | | 4g-13=31 | | h-19=2 | | 22x+2(3x+5)=21 | | .35x=10 | | 5(2c-2)-2c=25 | | 36=25+x | | 12x=8+8x | | 65+0.70x=0.90x | | 63=7(a+9) | | 2(2-x)=46 | | 40+k=51 | | w-12=14 | | 4(y-8)=9y-12 | | 3.6a=7.2 | | 30=5(x/5-3 | | 2.5x+5=40 | | 4.5=x/18 | | x^2+10x+67=0 | | 180=2x+6x+x | | 7(x41)-1=34 | | 8a+4=3a+24 | | 90+(x+6)+2x=180 | | 65x=85x+170 |

Equations solver categories