10x+27/3=7/3x-55

Simple and best practice solution for 10x+27/3=7/3x-55 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10x+27/3=7/3x-55 equation:



10x+27/3=7/3x-55
We move all terms to the left:
10x+27/3-(7/3x-55)=0
Domain of the equation: 3x-55)!=0
x∈R
We add all the numbers together, and all the variables
10x-(7/3x-55)+9=0
We get rid of parentheses
10x-7/3x+55+9=0
We multiply all the terms by the denominator
10x*3x+55*3x+9*3x-7=0
Wy multiply elements
30x^2+165x+27x-7=0
We add all the numbers together, and all the variables
30x^2+192x-7=0
a = 30; b = 192; c = -7;
Δ = b2-4ac
Δ = 1922-4·30·(-7)
Δ = 37704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{37704}=\sqrt{4*9426}=\sqrt{4}*\sqrt{9426}=2\sqrt{9426}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(192)-2\sqrt{9426}}{2*30}=\frac{-192-2\sqrt{9426}}{60} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(192)+2\sqrt{9426}}{2*30}=\frac{-192+2\sqrt{9426}}{60} $

See similar equations:

| x/12+x-8/8=1/2+x-6/6 | | 4x+38=17 | | 5z+3=9+4z | | x-8=-4.7 | | 129.5=(37*14)/n^2 | | 5x-28+63=180 | | 12=z-51 | | 7^(3x+4)=35 | | 49=5b-11 | | 15y+5=22 | | 3x-100+6x=26 | | 3(5x-4)=38 | | 12k+15=5+2k | | 16-(-2x+4)-(5x-3x+2)=4x+20 | | 0.875=6x/8 | | 4(2x-3)=5-2(x-1) | | d=32*3.9 | | 99-2x=7x2x | | 1250-t70=800-t40 | | 4f+0.5-0.2f=8.1 | | 5(3a-4)=7(6a+3)-7 | | 4p-0.6=4.8 | | 0.9m+0.5=5.7 | | 0.5t+0.4t=2.9 | | 0.4t-0.8=2.4 | | 0.6t-0.3=1.8 | | 15x+7x+3=43 | | 46/y=23 | | 3x+10=9x-5 | | 1/5m-12=10 | | 1/3p-4=3 | | 3t+2t=180 |

Equations solver categories