If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x+30=18x^2
We move all terms to the left:
10x+30-(18x^2)=0
determiningTheFunctionDomain -18x^2+10x+30=0
a = -18; b = 10; c = +30;
Δ = b2-4ac
Δ = 102-4·(-18)·30
Δ = 2260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2260}=\sqrt{4*565}=\sqrt{4}*\sqrt{565}=2\sqrt{565}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{565}}{2*-18}=\frac{-10-2\sqrt{565}}{-36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{565}}{2*-18}=\frac{-10+2\sqrt{565}}{-36} $
| 10x+30=18x+3 | | 18x=289 | | 3/4=3/8x | | 8f+4=52 | | 42=x+40/4 | | 4x+6=3(2x-7) | | 12x-5=-x+1 | | 3x+46=10x-10 | | 250=2•5x | | 2-6x=5-5 | | -105=7(2x+3) | | 4x9)/6=10 | | .15x+7=9 | | 2b^2+7b+2=0 | | p−39=40 | | F(-9)=3x-19 | | 3w+14=28 | | 3/2(7x+10)=3 | | X/2+x/5=6 | | 25x+30=15x+60 | | (x+1)=(x-1)+x^2+3 | | 29-17=4(x-6) | | (x+7)+(12x-27)=123 | | 266=5(5+8n)+1 | | (x+1)=(x-1)+C^2+3 | | 10(x+2)=6(x+2)+4(x+2) | | 9x(x+6)–(3x+1)(3x+1)=1 | | 3/4(10x+16)=6 | | 16x+9=27 | | -2-3(x+11)=22 | | 2(x-1)=6x-3 | | 5+3(x+6)=6+(3x+18) |