If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x+x2=875
We move all terms to the left:
10x+x2-(875)=0
We add all the numbers together, and all the variables
x^2+10x-875=0
a = 1; b = 10; c = -875;
Δ = b2-4ac
Δ = 102-4·1·(-875)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-60}{2*1}=\frac{-70}{2} =-35 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+60}{2*1}=\frac{50}{2} =25 $
| 10x+5-5x=5x+5 | | 10h+8=72 | | 6x-4x=+82= | | X+x/5=6 | | 8-7y-12+5y=6 | | -27=-6+2d | | 5x+7(5)=7x+6 | | 8x-18=5x+4 | | x*x=600000 | | 3{6-f}-4=3f-4 | | 9x-34=180 | | 9x-16=6x+65 | | 9x-16=7x+65 | | a-27=4- | | ƒ(x)=7x−22,ƒ(x)=48 | | x+25=-80 | | 3(5n+2)-4=15n+6-4 | | x^2-4x+4=2x-4 | | 4x+6x=-34 | | y=-1/2+11/12 | | −1q+3(1−q)=2q−2(1−q) | | (20+x)+(2x+1)=180 | | 143+(x+9)=180 | | x2-10=134 | | (3x+1)+(2x+14)=90 | | 6x+20=-4x8x | | 1+2=0z | | 47+(10+3x)=90 | | 50+b=90 | | 54+b=90 | | 3=7/4x-4 | | 3=7/4x-6 |