10x-23/10x=10x/10x

Simple and best practice solution for 10x-23/10x=10x/10x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10x-23/10x=10x/10x equation:



10x-23/10x=10x/10x
We move all terms to the left:
10x-23/10x-(10x/10x)=0
Domain of the equation: 10x!=0
x!=0/10
x!=0
x∈R
Domain of the equation: 10x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
10x-23/10x-(+10x/10x)=0
We get rid of parentheses
10x-23/10x-10x/10x=0
Fractions to decimals
-23/10x+10x+1=0
We multiply all the terms by the denominator
10x*10x+1*10x-23=0
Wy multiply elements
100x^2+10x-23=0
a = 100; b = 10; c = -23;
Δ = b2-4ac
Δ = 102-4·100·(-23)
Δ = 9300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9300}=\sqrt{100*93}=\sqrt{100}*\sqrt{93}=10\sqrt{93}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{93}}{2*100}=\frac{-10-10\sqrt{93}}{200} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{93}}{2*100}=\frac{-10+10\sqrt{93}}{200} $

See similar equations:

| 5=10+p/2 | | 0=16x^2+100x+85 | | 12x10=180 | | 10v+8=38 | | 96=x8 | | -84=6(3a-2) | | 3y2-2y+5=-3y(4-y) | | 64j^2-128j+64=39 | | 15b2+21b=0 | | -13.72x^2+23.52x-10=0 | | -8a-13=-4a | | x/22+11=12 | | 225b+21b=0 | | 0.03(7t-3)=0.21(t-2)+0.33 | | x+3=2x5 | | 2(m-9)=4(m+1)-18 | | 6+2(-7r-2)=86 | | 2(m-9)=(m+1)-18 | | 4(2x+3)-6=3x+10 | | 6h+5(h-5)=0 | | 5(y-3=20 | | (x+3)^2+8(x+3)+7=0 | | 4/7n=32 | | 12-6z-14=7z+22-5z | | 4d-26=3d+4=180 | | 4y+16=-3y-12 | | x^2+8864=-500 | | 16(y-4)+2y=14y-5 | | 12x+4=24x-68 | | 43=35+v | | m³-2m²-4m+8=0 | | 7p+54=-9-2p |

Equations solver categories