10x-24=1/4(24x)+64

Simple and best practice solution for 10x-24=1/4(24x)+64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10x-24=1/4(24x)+64 equation:



10x-24=1/4(24x)+64
We move all terms to the left:
10x-24-(1/4(24x)+64)=0
Domain of the equation: 424x+64)!=0
x∈R
We get rid of parentheses
10x-1/424x-64-24=0
We multiply all the terms by the denominator
10x*424x-64*424x-24*424x-1=0
Wy multiply elements
4240x^2-27136x-10176x-1=0
We add all the numbers together, and all the variables
4240x^2-37312x-1=0
a = 4240; b = -37312; c = -1;
Δ = b2-4ac
Δ = -373122-4·4240·(-1)
Δ = 1392202304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1392202304}=\sqrt{64*21753161}=\sqrt{64}*\sqrt{21753161}=8\sqrt{21753161}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-37312)-8\sqrt{21753161}}{2*4240}=\frac{37312-8\sqrt{21753161}}{8480} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-37312)+8\sqrt{21753161}}{2*4240}=\frac{37312+8\sqrt{21753161}}{8480} $

See similar equations:

| 7-5h=-4h | | 2c-1=2c−1=1 | | 5y-10=8-2+7y | | -3z=-4-2z | | 9(x−4)−7x=5(3x−2) | | 615=3.14r^2(4) | | u-10/2=3 | | 7x+9=8(x+1) | | 14=4j=+2 | | 7-8b=7-2b-2b | | -3(x+5)=3(-5-x) | | y=0.01-0.005 | | 13m=-234 | | 7d=-9+8d | | 12x+13=-7 | | -6x-49=-15x+86 | | 2(3*x)+2x=36 | | 10=4k+-10 | | 3d-9=4d | | 5x+2=4+3 | | 2(y-6=3(y-4)-y | | 4(x÷5)=12 | | 10=4k+–10 | | 9+3x=x-6-x | | 211=8-7(5n-4) | | y=(-3)^1 | | 16(4-3m)=96(-m/2=+1) | | 10x+3=9x-6 | | 4+8y-8y=1 | | -1/3-1/2v=1/5 | | -4(2x-6)=35 | | -3x+9=-3x+9 |

Equations solver categories