If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+105x-580=0
a = 10; b = 105; c = -580;
Δ = b2-4ac
Δ = 1052-4·10·(-580)
Δ = 34225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{34225}=185$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(105)-185}{2*10}=\frac{-290}{20} =-14+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(105)+185}{2*10}=\frac{80}{20} =4 $
| 5/3x=864 | | x/(-2)=36 | | y7−4=8 | | 5x-3=42-2x | | -54=6(x+1) | | 100+x+130+75+140+(5+x)+x+(x/2)+120+(3x)=1440 | | 3x-6=6x-12/3 | | x-√(8x-63)=9 | | -20=-9r-8r | | c2=2 | | -10=10{k-9} | | x/(-12)=-5 | | x^2-√(8x-63)=9 | | 6x+2x+10-8=24+34 | | −2x–3=4x–15 | | 2x-5/4=3x | | -2k-5=27 | | 7j=–10+6j | | 11y25=54=25=2y | | 8x-5x+8=38 | | 2s-3=-11 | | 13-7a=20 | | b−4=1 | | 12m−10m=–6 | | 5x+40=1000 | | 4x-9+5=16 | | 1.666x+4=7 | | m÷11=7 | | 3k−21=12 | | X/y=2/4/8/10 | | 0.5(x+2)=4 | | 3h=4h+8 |