If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+12x-11=0
a = 10; b = 12; c = -11;
Δ = b2-4ac
Δ = 122-4·10·(-11)
Δ = 584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{584}=\sqrt{4*146}=\sqrt{4}*\sqrt{146}=2\sqrt{146}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{146}}{2*10}=\frac{-12-2\sqrt{146}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{146}}{2*10}=\frac{-12+2\sqrt{146}}{20} $
| 9x2-1x-16=0 | | 9x2-x-16=0 | | 5x2+11x-8=0 | | 10x2-4x+12=0 | | 12x2-10x-8=0 | | 10x2+10x-18=0 | | 14x2+16x-17=0 | | 6x2+4x+14=0 | | 17x2+19x+19=0 | | 11x2-20x+10=0 | | 11x2-20x+110=0 | | 18x2-20x-15=0 | | 10x2+20x-13=0 | | 19x2-11x-1=0 | | 6x2+19x+3=0 | | 12x2-13x-20=0 | | 20x2-15x-13=0 | | 4x2-2x-7=0 | | 9x2-2x+7=0 | | 19x2-13x+7=0 | | 10x2-10x-2=0 | | 11x2-7x-7=0 | | 14x2-11x+16=0 | | x2-x-17=0 | | 14x2-3x+6=0 | | 4x2-14x-9=0 | | 11x2-11x-3=0 | | 14x2+4x-13=0 | | 16x2+13x+6=0 | | 6x=48= | | 5y^2+14y-8=0 | | 6x^2-31x+15=0 |