If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+14x-80=0
a = 10; b = 14; c = -80;
Δ = b2-4ac
Δ = 142-4·10·(-80)
Δ = 3396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3396}=\sqrt{4*849}=\sqrt{4}*\sqrt{849}=2\sqrt{849}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{849}}{2*10}=\frac{-14-2\sqrt{849}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{849}}{2*10}=\frac{-14+2\sqrt{849}}{20} $
| 2/5u-1/2=-4/7 | | 8+2-3x4/2=4 | | -7y+5(y-4)=-22 | | 8+w=45 | | 2x+5x-60=180 | | 3x÷2=18 | | 2x-4/5x-7=3/8 | | 27y-8^3=0 | | 9/4=(1/x-1)-5 | | 6x/5-x=x/15-8/15 | | 7a+26-3a=-4 | | 2/3x-1/3x=(-21) | | 2/3x-1/3x=21 | | -2(5x-6)=2 | | 111=x+(x+9)+4x | | 7(-1x-8)=-77 | | 7(-1x-8)=-7 | | 38x-32=0 | | 5(7+2x)=145 | | 3w=3w+3 | | 63x+49-14x+2x+4/14=36 | | v-4.69=6.6 | | 5(5+x)=26 | | 24+5x=-7x | | 0.5(z-0.4)/3.5-0.6(z-2.7)/4.2=z+6.1 | | 24+5x=-7 | | f^2+19f=0 | | 5/m=7/3 | | 15z+9z+5z−18z+-13z=-14 | | 7t+-18t−-10t=19 | | 20t+5t-24t+t=20 | | 3/7y+9=1/7y-3 |