If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+15x=0
a = 10; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·10·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*10}=\frac{-30}{20} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*10}=\frac{0}{20} =0 $
| 4(a+3)+5=-11 | | 0.25(3+x)=1.25 | | v/5-14=4 | | x+4=x4+1 | | 2v-13=13 | | 48=b4 | | -3(r+4)=24 | | -5(t+1)=-5 | | -6(k+9)=-132 | | X+2/10=x-6/9 | | -3c-2=2 | | 10+m=4 | | Y=55x+3 | | Y=14x-98 | | 2(5x-8)-3=12 | | 5/10=n/n-7 | | -8/x+14=20 | | 4x+16=9x+21 | | -3/6x=15 | | 4(-7p-3)=-7p-5(4p+2) | | 4x^2-9=2x^2-1 | | 2/8x=180 | | |3x+8|-14=-8 | | 2(x+3)=4×9 | | -0.4(t+3)=9 | | r-1=11 | | 2x^2-9=2x^2-1 | | -4+x-3=3x+7-2x | | -26+2x=-2(1-7x) | | 5x+8=3x+25 | | 8x+4=27+x | | 5x-3+2x=x+7=6x |