If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+20x-13=0
a = 10; b = 20; c = -13;
Δ = b2-4ac
Δ = 202-4·10·(-13)
Δ = 920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{920}=\sqrt{4*230}=\sqrt{4}*\sqrt{230}=2\sqrt{230}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{230}}{2*10}=\frac{-20-2\sqrt{230}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{230}}{2*10}=\frac{-20+2\sqrt{230}}{20} $
| 19x2-11x-1=0 | | 6x2+19x+3=0 | | 12x2-13x-20=0 | | 20x2-15x-13=0 | | 4x2-2x-7=0 | | 9x2-2x+7=0 | | 19x2-13x+7=0 | | 10x2-10x-2=0 | | 11x2-7x-7=0 | | 14x2-11x+16=0 | | x2-x-17=0 | | 14x2-3x+6=0 | | 4x2-14x-9=0 | | 11x2-11x-3=0 | | 14x2+4x-13=0 | | 16x2+13x+6=0 | | 6x=48= | | 5y^2+14y-8=0 | | 6x^2-31x+15=0 | | 3x(2x+5)=15 | | x2+11x+34=4 | | -5+3f=7 | | -4-3(4x+2)=3(5-2x)+1 | | 2x/3-x/3=x/4+3/2 | | n/2+n/3=35-n+30/5 | | 3(3x+5)+5(2x-9)=3(4x-3)-15 | | 5n-4/5=20 | | 2p-1=p+12 | | 10b+10=-5+7b | | 84x-17x-67=0 | | 3x+12=7-40 | | -7t=-8t-3 |