If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+24x=8
We move all terms to the left:
10x^2+24x-(8)=0
a = 10; b = 24; c = -8;
Δ = b2-4ac
Δ = 242-4·10·(-8)
Δ = 896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{896}=\sqrt{64*14}=\sqrt{64}*\sqrt{14}=8\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-8\sqrt{14}}{2*10}=\frac{-24-8\sqrt{14}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+8\sqrt{14}}{2*10}=\frac{-24+8\sqrt{14}}{20} $
| -6x+7=4x-13 | | -1/5(25x+15)=20 | | x+32x-5=19 | | 10x+4=36-6x | | 2(w+12)+2w=204 | | 6x.x=14.6 | | 30x+45=180 | | -8.6=-11+u/3 | | 2x+8=41-13 | | 4x×452=500 | | 6=9x72 | | 5x+1=2x+3x+1 | | 3.5x+2=2.5x | | 5x+1=2x+3x-1 | | 5x+4+79=180 | | y-14=3y+18 | | 7x+12-x=6-(2x-10) | | 3x+3=3- | | 4(3x-2)-8=15x+17 | | 4.3x-9.3=7.9 | | 7-6m=-113 | | 7+d/6=9 | | 12-x/9=17 | | 6−2u=3+u | | 23x−14=−6 | | 3m-7=-37-7m | | -9−9j=-7j+6−5 | | 7n−8=9−5+10n | | 5+6g=7g+3 | | 15x-12+60=180 | | 15x-11=-146 | | 10−9q=-10q |