If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+35x-280=0
a = 10; b = 35; c = -280;
Δ = b2-4ac
Δ = 352-4·10·(-280)
Δ = 12425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12425}=\sqrt{25*497}=\sqrt{25}*\sqrt{497}=5\sqrt{497}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-5\sqrt{497}}{2*10}=\frac{-35-5\sqrt{497}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+5\sqrt{497}}{2*10}=\frac{-35+5\sqrt{497}}{20} $
| p^2+14p-24=8 | | H=16t^2+84t+100 | | 5^(x+3)=16 | | t+16=20 | | m^2-8m+10=-2 | | 26=37/6x | | p^2-14p+52=7 | | X^2-20x+11=0 | | 647=159+61x | | x−28=8(2x+3)−7 | | 4x+1+3x-5+x=180 | | |10b|=50 | | x/5=3x= | | b^2+6b-48=-8 | | -5(1-5r)+7r=219 | | 82=5(2x+2)-x | | 2.9=k+1.7 | | 4(1-7p)=-108 | | 4(1-7x)=-108 | | 6a+6(a+6)=28 | | -6-7(-6x+6)=-174 | | 8c=64c= | | 4z/7+8=-6 | | 3r^2=108 | | F(-3)=4x^2-6x+3 | | 3(x-5)=x^2 | | z/9+5=5 | | z/7+5=1 | | 4*x^2-(-3*x)^2+x(3*x)+2=0 | | (x+7)(x-5)=64 | | 8x^2-9x+8=0 | | 15=3v/2 |