If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+40x=0
a = 10; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·10·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*10}=\frac{-80}{20} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*10}=\frac{0}{20} =0 $
| (2/3)(7/8-4x)-(5/8)=(3/8) | | 1=3+m/16 | | 18r-(-3)=1r-14 | | -4=8x+7-7x | | 11=3x-7=6x+5-3x | | 4r+7=3r | | t-8.1=24.9 | | 8n=20+4n | | 6(4x-1)=12(2+3) | | 14x-16=3x-28 | | 6-4x=7x-9x+13 | | 2(q+5)=-2 | | 9-3x=3-2x | | 8n=1n+4n | | 95=33f-4 | | 18r+3=-1r-14 | | 13p+11-3p=1 | | b/5-3=0 | | 9-3x=3+2x | | 4(3m+2)=1/2(16+24m | | 3n+57=-6 | | 18r+3=-1r-15 | | 4x–2+x=–2+2x | | 2(4s-16-5s=-5.2 | | 25=-7(5x+8)-6(1-x) | | 6(k+9)=-18 | | 3/4x+6=x+2 | | -20=2(y+5)-7y | | 0.08m+1.2=4.4 | | 10x+3=7x-4+19 | | 0.2(60)+0.05(12-x)=0.1(63) | | 20x-3+5×=22 |