If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+5x=0
a = 10; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·10·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*10}=\frac{-10}{20} =-1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*10}=\frac{0}{20} =0 $
| 5y=13y | | 3/5p(1+53)=312 | | 1386=33(p+15) | | (8x+1)+(3x+12)=90 | | -n^2=-5n-14 | | 3740=44(p+25) | | 4(-23+9u)=8(7u-16) | | -31x-41x=-48x | | 6.2•x=4.2 | | 3x+15=3x+11 | | 8(3n-4)=160 | | -2k+2=12 | | 0.25x+;20=21.25 | | 7(3x+4)=25 | | 25a^-8=8 | | 6.2xX=4.3 | | 6k+10=76 | | 2x+3x=4(x-1) | | 35x-5=35 | | 1=9x+2 | | 35x-8=12 | | -5(-3+k)=35 | | 5(x+1)=2(5x=1)-5x | | 2x-(3x+7)-5x=8x+3 | | -1x+7=-5 | | 4x-3=5(x+1 | | -3(-1=n)=-12 | | -5b+1=44 | | x+12=360 | | 3^(3x-2)=9^(2x) | | -1y+7=12 | | 3−9j=-10j |