If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+61x+90=0
a = 10; b = 61; c = +90;
Δ = b2-4ac
Δ = 612-4·10·90
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(61)-11}{2*10}=\frac{-72}{20} =-3+3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(61)+11}{2*10}=\frac{-50}{20} =-2+1/2 $
| 1/7+x=2 | | 2x+3x=43 | | 2x-27-3x=-12 | | 5q−10=10+9q | | 4y=9+5y | | 3r^2+3r-9=0 | | y^2+0.2y+0.01-36y^2=0 | | 1/200w+1=4 | | 2v-8=7v+22 | | 3r2+3r−9=0 | | 38=65x | | b÷8+32=34 | | 114=3x-36 | | 2x+7/8=7/8+1/2 | | 2x+5=x-88 | | -3+8x+4=7x | | c/4-8=12 | | 14/t=7/16.8 | | 6x+3=x8-21 | | 6m-18=78 | | 15-7a=36 | | x/14-10/14=5 | | 13x^2-169=0 | | 9(x+2)=135 | | 10m=10-5(3-7) | | 9e-4=0 | | 3x-23=43 | | 11x-6x=0 | | x+5÷6=8 | | 99.75=x+0.05x | | 14y+3y=-5y-18 | | 8z-16=2z |