If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+6x-13=0
a = 10; b = 6; c = -13;
Δ = b2-4ac
Δ = 62-4·10·(-13)
Δ = 556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{556}=\sqrt{4*139}=\sqrt{4}*\sqrt{139}=2\sqrt{139}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{139}}{2*10}=\frac{-6-2\sqrt{139}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{139}}{2*10}=\frac{-6+2\sqrt{139}}{20} $
| 11x2+8x+15=0 | | 2x2-9x+18=0 | | 9x2-9x+11=0 | | 2x2-13x+2=0 | | 2x2-8x-8=0 | | 18x2+7x-17=0 | | 8x2-3x-6=0 | | 9x2-10x-20=0 | | 16x2-8x+19=0 | | 6x2+18x-3=0 | | 14x2-10x-20=0 | | 8x2+7x-17=0 | | 9x2-18x+14=0 | | 10x2-14x-12=0 | | 5x2-17x+7=0 | | 10x2+16x-3=0 | | 18x2+20x-13=0 | | 2x2+16x+8=0 | | 15x2+20x-3=0 | | 14x2+17x-18=0 | | 7x2+3x-13=0 | | 12x2+7x-14=0 | | 10x2-6x-18=0 | | 3x2-19x-7=0 | | 15x2-18x-3=0 | | 13x2-13x-5=0 | | 8x2-10x-20=0 | | 9x2-6x+18=0 | | 20x2-14x+10=0 | | 5x2+13x-5=0 | | 6x2+2x-16=0 | | 13x2+13x-2=0 |