If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+81x+8=0
a = 10; b = 81; c = +8;
Δ = b2-4ac
Δ = 812-4·10·8
Δ = 6241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6241}=79$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(81)-79}{2*10}=\frac{-160}{20} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(81)+79}{2*10}=\frac{-2}{20} =-1/10 $
| -5(2×-6)=5x | | r+7/9=11/9 | | 5v+9v-14v+3v-v-1=29 | | -2(3x+4)=52 | | 39g-34g-3g+8g=20 | | 8(s+9)=-16 | | 20p+p-19p-p-1=8 | | 13x-5=6x-5 | | 9n+3n-4n-7n-1=18 | | 2=3-v/5 | | -1.6y-6.5=13.7 | | 16d+2d-14d+1=13 | | x(12-4.9x)=0 | | 78=-4d-9d | | -1.5-3y-1.1-y=-3y+0.1 | | 2y=(1/2)y^2 | | 10t-4t-4t=8 | | 10(r-7)=-100 | | 4p-4p+4p-2p=14 | | -5d+6d=6 | | 4x-2=52 | | 7/8x+-3/56=1/4 | | -1/11x^2+11=0 | | 3a+-15=21 | | 42=-6(s-8) | | b+4b-4b+3=8 | | 8x+2P=26 | | 9z-3z+2z-3z+11=6 | | -28=5c+2c | | 12h-2h+4h-11h+2=20 | | 10x-2(4x+6)+3=6(x+4)+5 | | 2=1.08^n |