If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+8x=1
We move all terms to the left:
10x^2+8x-(1)=0
a = 10; b = 8; c = -1;
Δ = b2-4ac
Δ = 82-4·10·(-1)
Δ = 104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{104}=\sqrt{4*26}=\sqrt{4}*\sqrt{26}=2\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{26}}{2*10}=\frac{-8-2\sqrt{26}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{26}}{2*10}=\frac{-8+2\sqrt{26}}{20} $
| x-16=42/6 | | Y=2x+350 | | 5x+3=17-9x | | 12+a/2=14 | | 7x+4=-6x-9 | | -13+2m=3 | | 21c=14+7c | | 4x+18+44=180 | | 26-5a=1 | | 3x=2x+110 | | x^2-7x-34=8-6x | | 3(–u+11)–18=15 | | 8x–34=2x-10 | | 10g=26-3g | | 4x+18=44 | | 54x=23 | | 16-x=42(6) | | 10x+10+12x-10=180 | | 83=x-17 | | 3x+6x-55=49 | | -3u-5=-17 | | x-16=42÷6 | | 13+7x=27 | | 0.3x0.9=0.27 | | y+54=180 | | 6a-4+a=3 | | 8x+3x+3x=28 | | x+13x-5+37=180 | | /1.2x=3.6 | | 2(3.8x-10)-2=-1.2x(3-6)+3x | | 2+28=-5(8x-6) | | 4-3c=8 |