If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+x-4=0
a = 10; b = 1; c = -4;
Δ = b2-4ac
Δ = 12-4·10·(-4)
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{161}}{2*10}=\frac{-1-\sqrt{161}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{161}}{2*10}=\frac{-1+\sqrt{161}}{20} $
| (x-4)+(-x+1)+(-x+6)=20 | | 8x-41=4+35 | | 21=5^3x | | -4(x-3)=-5x | | (x+10)(x²-8x+16)=0 | | (x-2)-2(x-1)=x+1- | | (x+3)^2+x^2-9x=8 | | 6-2(1+5f)=29 | | (7*10^4)x/3=4*10^2 | | 8Z-7=9z-1 | | 400÷0.1×.2=x | | 6-7p=2p+3 | | -5x+13+6x=-4 | | 5x²-3x+1=0 | | 2x+(3-x)=(x-2) | | 12×-3y=7 | | 9x-17-5x-32=23+4x+5 | | 28y=64 | | 3/5=7/11x | | 3x-6=3(x+4 | | 4y-89=3y-55 | | 3x4/5=4x3/5 | | (8x+2)=0 | | 1-12/2=3t/2-3 | | (33b-2)-8(-4b+4)=-4 | | 3x+0=2x+10 | | 9x-10=4×+7 | | 4x+5x+2=3(3x–1) | | 9x-7=4×+7 | | (x-6)/2=3-(x+6)/9 | | (x+2)(x-1)(1x-2)=x | | 7+9n=5n+7 |