If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-10+5=9
We move all terms to the left:
10x^2-10+5-(9)=0
We add all the numbers together, and all the variables
10x^2-14=0
a = 10; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·10·(-14)
Δ = 560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{560}=\sqrt{16*35}=\sqrt{16}*\sqrt{35}=4\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{35}}{2*10}=\frac{0-4\sqrt{35}}{20} =-\frac{4\sqrt{35}}{20} =-\frac{\sqrt{35}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{35}}{2*10}=\frac{0+4\sqrt{35}}{20} =\frac{4\sqrt{35}}{20} =\frac{\sqrt{35}}{5} $
| -3(y+1)=8 | | 4x+2+4x+10=180 | | 3.y=-14 | | 4x-32x-17=0 | | -2+25x+17=-25 | | x+113+19=180 | | h2=5 | | 37+(4x+6)+65=180 | | 3(x+)-(2x-3)=12 | | y2-6=58 | | -5/2+2/3u=-1/4 | | 7x+7=-2(x-7) | | 67+(2x+15)+90=180 | | 9x+-4x=35 | | 2(w+2)+3w=24 | | 8134=p+1264 | | 7x+7=-14x-7 | | w-1+2(7w+1)=-3(w+1) | | m-60=-35 | | 2n2-6=42 | | -28=7(p-10)-p | | 5(y-2)=7y+8 | | 27-(7+k)=10k-7 | | -12x+10+5x=45 | | 8-7t=64+t | | 37=32x/10 | | 6w-15=14w-87 | | 5u+32=9u+28 | | X-30=25g | | X+17x/100=117 | | b/4=6=13 | | 4(2x+3)*2+5=41 |