If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-10x-2=0
a = 10; b = -10; c = -2;
Δ = b2-4ac
Δ = -102-4·10·(-2)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-6\sqrt{5}}{2*10}=\frac{10-6\sqrt{5}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+6\sqrt{5}}{2*10}=\frac{10+6\sqrt{5}}{20} $
| 11x2-7x-7=0 | | 14x2-11x+16=0 | | x2-x-17=0 | | 14x2-3x+6=0 | | 4x2-14x-9=0 | | 11x2-11x-3=0 | | 14x2+4x-13=0 | | 16x2+13x+6=0 | | 6x=48= | | 5y^2+14y-8=0 | | 6x^2-31x+15=0 | | 3x(2x+5)=15 | | x2+11x+34=4 | | -5+3f=7 | | -4-3(4x+2)=3(5-2x)+1 | | 2x/3-x/3=x/4+3/2 | | n/2+n/3=35-n+30/5 | | 3(3x+5)+5(2x-9)=3(4x-3)-15 | | 5n-4/5=20 | | 2p-1=p+12 | | 10b+10=-5+7b | | 84x-17x-67=0 | | 3x+12=7-40 | | -7t=-8t-3 | | x/10+(x+8)/2=2x/5+5 | | 9y-5=24 | | x^2+16x+260=0 | | -50=-10+-2x | | 36/d=60d= | | 180=8x-5+10x+5 | | 8+3x=-4x+1 | | 7+4x=9x+5 |