If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-15x-11=0
a = 10; b = -15; c = -11;
Δ = b2-4ac
Δ = -152-4·10·(-11)
Δ = 665
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{665}}{2*10}=\frac{15-\sqrt{665}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{665}}{2*10}=\frac{15+\sqrt{665}}{20} $
| 5x2-3x-9=0 | | 17x2+19x-12=0 | | 20x2+x-11=0 | | 11x2+2x-8=0 | | x+50+10-x=90 | | 9.5x-0.05=10.5x+1.05 | | -x2+11x+480=0 | | 5x2+14x-2=0 | | 8x2+20x-8=0 | | 8x2+17x+8=0 | | 4x2-11x-12=0 | | (m+3)/8+(3m-1)/14=(2m-3)/7+(3m+1)/16 | | x+20135=10135 | | x/3-2(x-1)=5x/2-3 | | 5x/4-10x/3=15 | | -20x=-88 | | 16x2+19x-2=0 | | 15x2+13x-6=0 | | 5x2-7x-2=0 | | 11x2-19x+9=0 | | 3x2-18x+5=0 | | 6x2-18x+20=0 | | 17x2+12x+3=0 | | 3x2-17x-2=0 | | 15x2-11x-13=0 | | 14x2+x-9=0 | | 7x2+15x-7=0 | | 17x2-20x-16=0 | | 20x2+5x-10=0 | | 13x2+7x-9=0 | | 16x2+7x-2=0 | | 18x2-6x+9=0 |