If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-20x-10=0
a = 10; b = -20; c = -10;
Δ = b2-4ac
Δ = -202-4·10·(-10)
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20\sqrt{2}}{2*10}=\frac{20-20\sqrt{2}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20\sqrt{2}}{2*10}=\frac{20+20\sqrt{2}}{20} $
| -2+7z=2z+10+3z | | 10w-120=0 | | 4x−1=−4x+87 | | 9x=-2x-22 | | 4x+2x+x+x=22 | | 293=4f+-107 | | 9(w-7)-2w=3(2w-6) | | 8-6n=-10 | | 28.26=2(3.14)d | | 13r=2r-66 | | (x/6)+(x/3)=3/4 | | 14(r-977)=308 | | x/4.2+40=-10 | | -4y+28.8=3.2 | | 4+2/5×r=-2 | | -8a=8-7a | | 2/3x-3=7/9= | | -6x-2=3x-4 | | 276=-6(2-6x) | | 10u+82=-528 | | 4t-337t-504t−3=37t−50 | | 4+2/5×r=31 | | 4-(2x+5)=-3x-1 | | 7-5(1+4c)=-30 | | c=(3.14)9 | | x-10(4)=14 | | 3h+6=14+h | | -10(d-91)=-50 | | 8m–7=17 | | 104=8(5+2n) | | 8/n=16 | | 104=8(5+2n |