If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-21x-10=0
a = 10; b = -21; c = -10;
Δ = b2-4ac
Δ = -212-4·10·(-10)
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-29}{2*10}=\frac{-8}{20} =-2/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+29}{2*10}=\frac{50}{20} =2+1/2 $
| 5(x+4)^2=90 | | 32=8/9x | | 22-(4x-2)=1 | | 20a=17a-59+8a+27 | | 2(4x-3)=10x+4 | | 94=10b-68+b+27 | | 0.5x^2-3x+6.5=0 | | 6w+72=w+82+54 | | 0.5x^2-3x6.5=0 | | 2u+51=2u+2u | | 360-(75+65+55+45+35)=n | | 0.5^2-3x+6.5=0 | | w+50=2w+4w-49 | | 9u=u+23+5u+25 | | 75+65+55+45+35=n | | 25=-5/6v | | 7.200s=800 | | 5(n+3)+4n5(n+3)+4n=15+5n | | 31.4y=31.4 | | 3y=4-2× | | 1/4m+3=-4 | | (2x-3)/6=2x/3+½ | | 72=6w+3w | | 2x^2+x+66=0 | | 14p–9p+-17p–-5p–-8p=15 | | 2x/5-5/9=4/9 | | 16=10x-2x | | 6u+u=21 | | 10x+4=2×12= | | 10x+4=2×12 | | 2/3t-1=5/3 | | 2(4z+9)=8 |