If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-24x-6=0
a = 10; b = -24; c = -6;
Δ = b2-4ac
Δ = -242-4·10·(-6)
Δ = 816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{816}=\sqrt{16*51}=\sqrt{16}*\sqrt{51}=4\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-4\sqrt{51}}{2*10}=\frac{24-4\sqrt{51}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+4\sqrt{51}}{2*10}=\frac{24+4\sqrt{51}}{20} $
| 11=5(v+7)-8v | | -8/9t=5/7 | | x+(4x-95)+205=360 | | 5x-7/3=9 | | x+(4x-96)+205=360 | | |5x+5|=25 | | 8/9a=-8 | | 7.45=x+2 | | 3/4(x-4)=5+2x | | 7/13=y/9 | | -t/8=11 | | F(t)=-6t3-t+2 | | V=4/3π,r=3.8 | | |4x+7|=6 | | 5x-20=2x+6=4x+2 | | -8=4y-16 | | 10x+13=5x+20 | | 1/x+x/2=8 | | 8x+6x=5 | | 7x^+14=0 | | -3c−-15c−13c=16 | | 4h+4h=16 | | 15v+-5v+6v+1=-15 | | k-3/5=9/10 | | -12w−-15w+-9=3 | | 13d−17d+-12d=-16 | | 8u+u−12u=-12 | | 2t+8t=10 | | 10q−16q−2q+19q−4q=-7 | | 7+4(x-3)=8-6(x-7) | | 9r+r+2r−3r=18 | | 16y-2=83-y |