If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-26x+12=0
a = 10; b = -26; c = +12;
Δ = b2-4ac
Δ = -262-4·10·12
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-14}{2*10}=\frac{12}{20} =3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+14}{2*10}=\frac{40}{20} =2 $
| 13k+k-6k+k-6k=18 | | 5p-p-2p=10 | | 3x-46=41 | | 2y^2-19y-60=0 | | 7(-1+7y)=140 | | 11-(p-3)=5(p+3) | | 3x-3+5x=5x+3 | | x^2+(x+10)^2=576 | | -24-11k=8 | | 2(7x+2)+5x=156 | | 2x+9=6+x | | 3x+105x-10=180 | | –2+–2k=–8 | | 3v2+26v+49=0 | | x+5+5=5x+4 | | -8(2+8x)-8x=-160 | | 13k-4k-2k-4k-2k=20 | | 5x-3+3x=5 | | y^2-12y+40=y | | (v-7)(v-1)=0 | | -3x^2(5/6+-1/2)=0 | | 0.9x+x=0.6 | | 1/5x(25x-20)=51 | | 5x−3+3x=5 | | 3(-8+5x)+2x=95 | | 5n-8=17-3n | | -9≤-2r-9=11 | | y=4+300 | | (p+6)(4p-3)=0 | | 16d-13d-4d=5 | | 7(6-4b)=154 | | 20+x+10=3x-4 |