If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-2x=0
a = 10; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·10·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*10}=\frac{0}{20} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*10}=\frac{4}{20} =1/5 $
| 51+(3x+9)=180 | | -6-2d—19d+-16d-15d=20 | | 4(5x-3)=-24 | | -2r+3(4-2r)=-12 | | 5(y+1)=−9y+33 | | (42+6x)=90 | | -(a+5)=25 | | -1/2(p)=-10 | | 3x-131=6x-63 | | 9w-2=8w-1 | | (x+3)(x-2)=(x-4)(x-4) | | 3x/4-2=5/2 | | x-20=3X-10=90 | | 3x+2(4x+8)=2x(6+4)-2 | | 6(2y+2)=2(5y+7) | | 7(9+v)=84 | | 4(5y-3)=28 | | -3x–2x+9=29 | | j/7+1=-1 | | (x+3)(x-2)=(4-x)2 | | 3x-131=189-63 | | 1/2x-¾=⅝ | | 2n–3.1=1.9 | | 39+(4x+1)=180 | | 3(2h+6)+4=(2h-4) | | -3(1-6k)=6k+12 | | 3x=2(4x+9)=2x(6+4) | | 39+(4x+1)=90 | | -9x÷3+6=24 | | -9x+62=17 | | 7x+3=7x+20 | | c/3=98 |