If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-31x+15=0
a = 10; b = -31; c = +15;
Δ = b2-4ac
Δ = -312-4·10·15
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-19}{2*10}=\frac{12}{20} =3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+19}{2*10}=\frac{50}{20} =2+1/2 $
| 6x=10+5 | | 15n+7n−4n+6n+–10n=16 | | 3(3+x-5)=(4)(4+x-8) | | -36/k+12=6 | | 37-4x=17 | | -8x^2-30x+18=0 | | 6x-50=6(40)-50= | | 6j-1=5j+8 | | 3x19+10+144-4x19+54+5x19-4+4x19+4=360 | | X2,+2x-195=0 | | k/7.8+47.6=16.3 | | -7/6=b/12 | | 8m-(7-11M)=50 | | 3x41=2 | | 4k=3k-6 | | 96=12q | | 6*(18−x)=54 | | 10b+20=140 | | k=8k-14 | | k/20=-2 | | -7.5k+0.29=-5.71 | | -5=-y-1 | | 13x=819 | | 48n+11n-20n+12=0 | | 7x+4+3x+16=180 | | 2(x-2)+7=13 | | x+12/5=3(x-2) | | 108=12q | | 9x-18=9x+24 | | 7n+1=127 | | x2+14x=−8 | | -8x+9=-47 |