If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-41x+40=0
a = 10; b = -41; c = +40;
Δ = b2-4ac
Δ = -412-4·10·40
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-41)-9}{2*10}=\frac{32}{20} =1+3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-41)+9}{2*10}=\frac{50}{20} =2+1/2 $
| (6x-2)=36-10x | | 5a=5+8=13 | | -8+-21a=25a | | 12x-1,8x^2=-9,1 | | 9-4(x+1)=3x-(15x-1) | | 2x²+x-15=0 | | |4x-5|=8 | | 58=-7r | | 2x+25=-3x | | 5(r+9)+2(1-r)=1 | | |z+7|=|z-10| | | 175m-100m+48,500=51,250-175m | | X^2-31x-900=0 | | 5(x-89)+3(x+45)=x+9 | | 5-x=x-7 | | 5x+17=17×3 | | 3x+9=2×+15 | | 10y-(2y+1)=39 | | 3n+3(n+1)=39 | | a+2(-5a+5)=82 | | (2x+1)+(x+-10)=90 | | -k+5(3-8k)=261 | | -5(5+4x)=115 | | 22-3n=64 | | -5(1+5n)=-130 | | 2,4x^2-13,1x+2,2=0 | | -9+8x=-7 | | -70=10+8r | | 7n-5=-82 | | 5=12+b | | 6+4x-3x^2;x=5 | | 5x+2-23=0 |