If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-45x-450=0
a = 10; b = -45; c = -450;
Δ = b2-4ac
Δ = -452-4·10·(-450)
Δ = 20025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20025}=\sqrt{225*89}=\sqrt{225}*\sqrt{89}=15\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-15\sqrt{89}}{2*10}=\frac{45-15\sqrt{89}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+15\sqrt{89}}{2*10}=\frac{45+15\sqrt{89}}{20} $
| 10=t÷4 | | 7x+8+7x=106 | | f-267=1,001 | | 4x2-5x2+2x=5 | | 5-3x+7x=-11 | | 60=5x+3x-4 | | -11x-7=15 | | 48=-4g | | 5x+6+6x=83 | | -2(-4m-6.8)=44.8 | | -17=-x-x-9 | | 7x-3+4x=30 | | z/13=2(3z+1)/9 | | 6x-8+x−1=-16 | | 3x-11=8+x | | 5t/7=30 | | 5x+17=1/2((37x+5)-(23x-5)) | | P2+9p+4p=0 | | 9x/18+10/18=12x/18= | | -3h-4=8 | | 65=3x^ | | 27×-9y=81 | | -2x-9=-11x+9 | | 3(6x-4)+7/10=1.3 | | x=x+11(2+x) | | 12=7x-33 | | 92/69=28/w+13 | | 3t+4=-26 | | –87−69n=97−65n+84 | | –7c=–8c+6 | | 3x-6=-7x+10 | | (3x)^2-x^2=22500 |