If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-4x=16
We move all terms to the left:
10x^2-4x-(16)=0
a = 10; b = -4; c = -16;
Δ = b2-4ac
Δ = -42-4·10·(-16)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{41}}{2*10}=\frac{4-4\sqrt{41}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{41}}{2*10}=\frac{4+4\sqrt{41}}{20} $
| 7=-13=d | | -5(4x-2)=-2(-3+6x) | | 0.6(x+200)=0.68x-456 | | 9=2k+3. | | 4x+18=53 | | 4z=-31 | | 42+(5x)+(7x+6)=180 | | 5x-1=5x-15 | | X3+10x=51 | | 5x-13=15+15 | | 190/x=10/20 | | 2(v-2)=-3v-39 | | 90=(4x+2) | | 1/5x+1/5x=6 | | -4=g+`1 | | 19+16d=-13+18d | | 4(2x-10=24 | | 3b-56+1=0 | | 7x+38=9(x+6) | | 18x+12=-5 | | 43=4v-13 | | 3(-4x+11)=-12x+ | | 18x+12=−5 | | -3k=-24 | | b+(-14=25 | | 1/2x-1/9x=7 | | 2p=10=40 | | v/3-13=24 | | 57+25x=182 | | 4=3(6x-8)+8(1-x) | | 15=x/4+11 | | (13/27)×x+6=41 |