If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-53x+15=0
a = 10; b = -53; c = +15;
Δ = b2-4ac
Δ = -532-4·10·15
Δ = 2209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2209}=47$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-53)-47}{2*10}=\frac{6}{20} =3/10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-53)+47}{2*10}=\frac{100}{20} =5 $
| 44-(3c+4)=2(c+5)=c | | -6x-2(-4x+8)=-36 | | k+8.4=19.8 | | 6x-7(3x-18)=-216 | | 4/x+1.8=6/x+4.3 | | b+43+46=8b+45 | | 144=-7x-2(2x-6) | | 49n2-16=0 | | x+11+4x-41=4x | | -3x-5(-4-7)=188 | | 8p-49+39=6p+22 | | -4x=3x+-14 | | 13x-5(-4x-7)=188 | | 4b-45+2b=b+50 | | 35=7/2u | | 20x+5)(2+3)=17x+2 | | 3c+3c/2+4c-2+c=169 | | 2(x+1)^2+7=1 | | .5=q+.6 | | 109=-7x-6(4x+18) | | s+30+45=30s-41 | | C(x)=45.75-0.05x | | 3x-5(x-4)=-9+4x+17 | | |9n-9|+10=7 | | 6x+x-5=2 | | h/14=5/7 | | 3x−5(x−4)=−9+4x+17 | | 15x-10)/5=15x-2 | | 120/x+300/2x=9 | | -14+3(n+10)=7(2n+4)+n | | 4x+72x+5=28 | | 10x-20=-5(7x-23) |