If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-5x-4=0
a = 10; b = -5; c = -4;
Δ = b2-4ac
Δ = -52-4·10·(-4)
Δ = 185
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{185}}{2*10}=\frac{5-\sqrt{185}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{185}}{2*10}=\frac{5+\sqrt{185}}{20} $
| 6x/16=7 | | 38+3x=110+5x | | 12x+12=13x+1212 | | 4x-7+13x+9=180 | | 5x-7x+9=39+5 | | (x)=(x+2) | | 5x-9x+9=49+5 | | 2b=3b-33 | | 6y-83=180 | | -4+73=-15x+163 | | 4m—4=4m | | 3c-22+5c-22=180 | | x=39+2/9 | | 6n=6=48 | | -9(w+8)=6w-27 | | x+1=4x-9 | | −3(n+3)=3 | | -9(x+6)=-407 | | 3(x+-9)=-15 | | 5x-10+3x=46 | | x(2*x+1)=2x^2 | | 2(5+4w)= | | 3a-92=a | | 3v+36=-3(v+8) | | 3(3c+5)+1=2(c-20 | | 5x-16+6x=46 | | 3a-92=180 | | 5x-16+8x=46 | | 5x-16+9x=48 | | -3=21-6a | | 10x-16+8x=48 | | 10x-16+9x=48 |