If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-5x-6=0
a = 10; b = -5; c = -6;
Δ = b2-4ac
Δ = -52-4·10·(-6)
Δ = 265
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{265}}{2*10}=\frac{5-\sqrt{265}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{265}}{2*10}=\frac{5+\sqrt{265}}{20} $
| 11x2+20x-1=0 | | 19x2+11x-6=0 | | -7(6=d=49 | | x+3/2x-4=5 | | 5(2-1/2y)+3y=9 | | 18x2-8x+4=0 | | 20x2-16x-5=0 | | 14x2+14x-17=0 | | 6x2-4x+7=0 | | 3x2+12x+8=0 | | 11x2-10x-14=0 | | 3^(5x-2)=27 | | -12(.5)+h=-8.5 | | 4y=3y-15 | | 7+2x=-29 | | -3-x=18 | | -9+x/8=-12 | | 2(x+4)+x+1=3x+9 | | -8x-17=19 | | -124=6+6(7b+7) | | 9x2+15x+16=0 | | 5x2+x+1=0 | | 9x2+5x+10=0 | | 4(-2x-5)=28 | | 3x2-1x+12=0 | | 13x2+x+10=0 | | 3x2+11x+15=0 | | 3x2+11x15=0 | | 20x2-17x-7=0 | | 3x2+13x-4=0 | | 17x2+16x+20=0 | | 15x2+12x-9=0 |