If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-60x=0
a = 10; b = -60; c = 0;
Δ = b2-4ac
Δ = -602-4·10·0
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-60}{2*10}=\frac{0}{20} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+60}{2*10}=\frac{120}{20} =6 $
| -8x+6x=-7+12 | | 3x+4x–9=33 | | 53x+2+2x=7x-20 | | 17x=17-1 | | Q(x)=2x4–8x3-2x2+4 | | 3b-14=-2b+16 | | -33x-4=2x+23 | | .36(x-50)=200 | | ‐8(‐3m‐3)=96 | | P(x)=4x3–3x2+x–2 | | 12/5=12x | | P(x)=4x3–3x2+x–2; | | -2s-7=7s-8+1 | | 12n=6=-3n-9 | | -80+x=7x+58 | | u+28+u+26+88=180 | | 21+r=66 | | -5x+18=3x+2 | | (3x+2)(3x-2)=9x(x-8) | | 743=y+813 | | 2x-221=87-9x | | x/(x-5)=10 | | x/2=−6 | | 40=p+20 | | 5(-9x+1)+5=-10x=5(-7x+2) | | -9r-7=8-7r-1 | | 3+x14+2x+43=12+x | | 12x-22=11x+6 | | x =−6 | | 15+39=k+40 | | g-48=2 | | 13=√4x+5 |