If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-7x-5=0
a = 10; b = -7; c = -5;
Δ = b2-4ac
Δ = -72-4·10·(-5)
Δ = 249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{249}}{2*10}=\frac{7-\sqrt{249}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{249}}{2*10}=\frac{7+\sqrt{249}}{20} $
| -5m+8=33 | | 5505=2x+2000 | | -30=-2+7x | | 15x−14x−x+4x=4 | | -6m+8=-46 | | 3(0)+2y=3 | | -6p-4(4-3p)=3(p-4)-19 | | 25.8=1/4x | | 7x/2+5=3x/5-4 | | 3c÷9=4-c | | X^2+22x-5040=0 | | X+1/4x=4.5 | | 4(2x+13|)=80 | | 42=15u-9u | | 5x²-2x-3=0 | | 8+3(x+8)=-2x+9(x+8) | | 4x+-1=3x+3 | | .25(x)=750 | | 18x=-11x | | 5x-3+21-x=0 | | 6d-3=4d+17 | | 8x^2+10x-102=0 | | X^2+45+14x=0 | | 13.x+6=0 | | 2.7=k-8.5 | | (6x-1)(2x+1)10-(2x+1)(x)5=(6x-1)(x)15 | | 42=3(5x-10 | | -(v-1)=-6v+26 | | 3,8x-(6+0,4x)=1.3(6-2.6x) | | 7x+2=3x*26 | | -(2q+6)+3(2q+5)=2q | | -(2q+6)+3(2+5)=2q |