If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-8x=0
a = 10; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·10·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*10}=\frac{0}{20} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*10}=\frac{16}{20} =4/5 $
| c+10.25=22.25 | | 4(2k+6)=88 | | y=250,000(1.1)6 | | 5x+20x+x=10x-7x+32+3x-12 | | 70+50=5x-10 | | y/6-2=-3 | | y=250000(1.1)6 | | --2a=16 | | -5b=27.5 | | g-6=54 | | 3(5)^x-4=75 | | 15x-18=3(5x-6) | | x-3=79 | | X+5/x=3 | | 5x+42=4-2x | | 70+50+50=5x-10 | | x=32/2+2^4 | | 1-x=1.1 | | 3x-5=890 | | w+5=3.75 | | 51+(4x+3)=180 | | 180-0.5x=200-1.5x | | 4x-2(x-2)=9+4x+7 | | w-5=3.75 | | 3+2m=18 | | w/5=3.75 | | w5=3.75 | | 5w=3.75 | | 85+5x-10+5x-10=11x+3 | | (x-2)(2x^2-5x-9)=(x−2)(2x2−5x−9 | | (2p-6)(7p+4)(p-8)=0 | | 7p-8=8p-17 |