If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-90=0
a = 10; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·10·(-90)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60}{2*10}=\frac{-60}{20} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60}{2*10}=\frac{60}{20} =3 $
| 41=k+15 | | -5+4x=-6x+25 | | -15=-8+a | | 22/d=-2 | | -(7x+1)=6 | | 8b+11b=2+15 | | 2n+4=62 | | 31-6x=27-8x | | x+(5-10x)+8=13 | | 5(7a+5)-6=369 | | 2x−3−8x=14+2x−1 | | 4x-6+74=180 | | 8x+9-12x=7x-13-5x | | t+80=-6t-4 | | 2/3•k=28•2/4 | | 3(t+9)=2(t-8) | | V+154=-5v-8 | | -7a-8=a+80 | | 9x+12=7x+12 | | .5=5x-7 | | c-171=-3c-7 | | 17−x=1/3•15+6 | | 6a+25=6a+2 | | 16=-9/2x^2 | | -5t+5=t+179 | | 7x+5=5x+(-9) | | 17−x=13•15+6 | | p+72=-3p+8 | | 8m-14=8m+14 | | 3h+15=3h+15 | | 100=3z | | u+4.2=8.31 |