If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2=320
We move all terms to the left:
10x^2-(320)=0
a = 10; b = 0; c = -320;
Δ = b2-4ac
Δ = 02-4·10·(-320)
Δ = 12800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12800}=\sqrt{6400*2}=\sqrt{6400}*\sqrt{2}=80\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{2}}{2*10}=\frac{0-80\sqrt{2}}{20} =-\frac{80\sqrt{2}}{20} =-4\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{2}}{2*10}=\frac{0+80\sqrt{2}}{20} =\frac{80\sqrt{2}}{20} =4\sqrt{2} $
| q–25=1 | | 12+c4=4 | | 3c+8=1 | | 5a−1+2a+5+a=9a+3a+8−5a−6 | | 16.x-11=22-2x | | r+84=4 | | 30=7x+8x | | 66=6(b+10) | | -4y2−64y+196=0 | | 5x-16=11x+8 | | (52x)+(-92x)=96 | | 4x+16,2=2x-4 | | 4(5-6x)=-100 | | 3=18+1/44*n,n | | 4(0.75x-1)=7x-20 | | 3x/4-6=21 | | 6x-2x+15=-3x-13 | | 4x+10=183 | | 6x-2x+15=-3x-14 | | 6x+7+2x=15 | | 3x−3−12x−10=41 | | 25x^2=250 | | 82=3x+(x-3)+x | | 9(6-2y)=18/7 | | y−5/3=1 | | 251=121-v | | 3c^2=15 | | 35=-5(3z+8) | | 1.5m+3=-48 | | 2^x-6=256 | | 4x—5=7x+15 | | y+30=50 |