If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y^2+57y+35=0
a = 10; b = 57; c = +35;
Δ = b2-4ac
Δ = 572-4·10·35
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(57)-43}{2*10}=\frac{-100}{20} =-5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(57)+43}{2*10}=\frac{-14}{20} =-7/10 $
| T(n)=7n+2 | | 10(s-9)=159 | | 3y+4=5y-14 | | 45+x=30+2x | | 145^2+b^2=27^2 | | 4(x+2)-6=18 | | 1/3x+5-x=9 | | 26x=40+22x | | -17-8x=139+4x | | 7x-2=-18+15x | | 7n=5n+48 | | 4x-30=-10+2x | | p-147=5,p | | 27^3x-9^6x=6 | | 0,4x-0,7=0,1 | | 7x-6x+1=3x+5 | | 3/4x=9+12 | | z-(-12)=-36 | | 3(6+g)=33 | | 29-y×40-2y=120 | | -7x+47=-107 | | -.02x^2+.6x+5=0 | | 6m=4m-12 | | 6x+10-5x-28=180 | | 7⋅(3+x)−4x=4x−61 | | 5b+6=114.1-9 | | x=4(2x+3)+5 | | -105-13x=38 | | 7x=3+x-61 | | 3(x+5)−5(x−1)=12 | | 5x–7=x–5 | | 26x=+22x |