11(4+3n)-3=-6(-6n-8)+2

Simple and best practice solution for 11(4+3n)-3=-6(-6n-8)+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 11(4+3n)-3=-6(-6n-8)+2 equation:


Simplifying
11(4 + 3n) + -3 = -6(-6n + -8) + 2
(4 * 11 + 3n * 11) + -3 = -6(-6n + -8) + 2
(44 + 33n) + -3 = -6(-6n + -8) + 2

Reorder the terms:
44 + -3 + 33n = -6(-6n + -8) + 2

Combine like terms: 44 + -3 = 41
41 + 33n = -6(-6n + -8) + 2

Reorder the terms:
41 + 33n = -6(-8 + -6n) + 2
41 + 33n = (-8 * -6 + -6n * -6) + 2
41 + 33n = (48 + 36n) + 2

Reorder the terms:
41 + 33n = 48 + 2 + 36n

Combine like terms: 48 + 2 = 50
41 + 33n = 50 + 36n

Solving
41 + 33n = 50 + 36n

Solving for variable 'n'.

Move all terms containing n to the left, all other terms to the right.

Add '-36n' to each side of the equation.
41 + 33n + -36n = 50 + 36n + -36n

Combine like terms: 33n + -36n = -3n
41 + -3n = 50 + 36n + -36n

Combine like terms: 36n + -36n = 0
41 + -3n = 50 + 0
41 + -3n = 50

Add '-41' to each side of the equation.
41 + -41 + -3n = 50 + -41

Combine like terms: 41 + -41 = 0
0 + -3n = 50 + -41
-3n = 50 + -41

Combine like terms: 50 + -41 = 9
-3n = 9

Divide each side by '-3'.
n = -3

Simplifying
n = -3

See similar equations:

| 12d+3=-2d+17 | | 16=x+6 | | 12x-83+6x=121 | | 6(1-8n)-11n=6(n+1)-10n | | -8(1+n)=-(6n-4) | | -11=n-10 | | -3(2-a)=9(2a+6) | | -17p=51 | | 6(-10+5x)=-4(-7-2x) | | 87=3x+6 | | 4x+9=8+x | | 3+6x+9=6x+7-8 | | 4y^2-16y+1=0 | | -8=x-10 | | -6(11m-6)=-9m-6(10m-4) | | 7x+3(x-8)=4(y+2)-3 | | -8(11-9x)+1=2(8-12x)-7x | | 9.46+30x=15.3 | | y=1-9x | | 20*x=240 | | y^4+6y^3+17y^2+22y+14=0 | | n+17=23 | | 2a^3-a^2+a-2=0 | | .5*-2= | | 1=x-11 | | .5*-2+6=-7 | | 2a^4+a^3+4a^2+a+2=0 | | q^2-11q+18=0 | | 1-12b-7+8b=-4(b-3)-3(9-b) | | -143=-13x | | 1-12b-7+8b=-4(b-3) | | (4+3)+.70x=24.50 |

Equations solver categories