If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11.63+17.86y(0.006116-y)=100-78.74y(1+y)
We move all terms to the left:
11.63+17.86y(0.006116-y)-(100-78.74y(1+y))=0
We add all the numbers together, and all the variables
17.86y(-1y+0.006116)-(100-78.74y(y+1))+11.63=0
We multiply parentheses
-17y^2+0.103972y-(100-78.74y(y+1))+11.63=0
We calculate terms in parentheses: -(100-78.74y(y+1)), so:We get rid of parentheses
100-78.74y(y+1)
determiningTheFunctionDomain -78.74y(y+1)+100
We multiply parentheses
-78y^2-78y+100
Back to the equation:
-(-78y^2-78y+100)
-17y^2+78y^2+78y+0.103972y-100+11.63=0
We add all the numbers together, and all the variables
61y^2+78.103972y-88.37=0
a = 61; b = 78.103972; c = -88.37;
Δ = b2-4ac
Δ = 78.1039722-4·61·(-88.37)
Δ = 27662.510442177
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(78.103972)-\sqrt{27662.510442177}}{2*61}=\frac{-78.103972-\sqrt{27662.510442177}}{122} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(78.103972)+\sqrt{27662.510442177}}{2*61}=\frac{-78.103972+\sqrt{27662.510442177}}{122} $
| 964044+0.366*20x+125990x=x | | 81.3+15.63y(0.007164-y)=100-10.99y(1+y) | | 2v=—26 | | 70.42+20.62y(0.004063-y)=100-16.95y(1+y) | | .2=x/8 | | 78.74+18.52y(0.006515-y)=100-10.53y(1+y) | | 5(c-20=35 | | 3(b+16)=48 | | .083=x/5 | | 10/120=x/5 | | 4m-44=60 | | 3(r-3)=9 | | 9y=7-3y/7 | | 67.11+23.81y(0.003317-y)=100-18.87y(1+y) | | 6(3y-1)=7y+1 | | 2x+10=3×-15 | | 7x-4x4=33 | | 4x/3=96 | | 3/2x+3=18 | | 5+2(x-3)=3x-8 | | 64.10+27.03y(0.003059-y)=100-18.87y(1+y) | | 9x/17=5 | | -5-4x=1 | | -54x+5-7x=-408+x | | 4x+38=13-43 | | 12-3x=4+-2 | | 8(7q-5)=4q+1 | | 2x+8x-5=x-13 | | 65.36+24.39y(0.003889-y)=100-16.13y(1+y) | | 5x-5=10x+9 | | 100+0.8(x-100)=250 | | 79.37+17.24y(0.008039-y)=100-9.09y(1+y) |